Source code for mindfoundry.optaas.client.client

from typing import List, Any, Dict, TYPE_CHECKING

from mindfoundry.optaas.client.api_key import ApiKey, UserRole
from mindfoundry.optaas.client.expressions import PriorMeanExpression, Constraint
from mindfoundry.optaas.client.goal import Goal
from mindfoundry.optaas.client.utils import MfOptOptimizer
from mindfoundry.optaas.client.objective import Objective
from mindfoundry.optaas.client.parameter import Parameter, GroupParameter
from mindfoundry.optaas.client.session import OPTaaSSession, DEFAULT_MAX_RETRIES
from mindfoundry.optaas.client.task import Task
from sympy import Expr

if TYPE_CHECKING:  # pragma: no cover
    from mindfoundry.optaas.client.sklearn_pipelines.mixin import OptimizablePipeline  # pylint: disable=unused-import
    from mindfoundry.optaas.client.sklearn_pipelines.sklearn_task import SklearnTask  # pylint: disable=unused-import

_API_ROOT = '/api/v1'


[docs]class OPTaaSClient: """Sets up a connection to OPTaaS and allows you to create a :class:`.Task`, retrieve existing Tasks etc. Args: server_url (str): URL of your OPTaaS server api_key (str): Your personal API key disable_version_check (bool, default False): Set to True if you don't want to be notified when a new version of the client is available max_retries (int, default 3): How many times to retry a request if a connection error occurs. keep_alive (bool, default True): Very rarely required. Set to False only if you experience connection dropping issues. """ def __init__(self, server_url: str, api_key: str, disable_version_check: bool = False, max_retries: int = DEFAULT_MAX_RETRIES, keep_alive: bool = True) -> None: self._session = OPTaaSSession(server_url=server_url, api_key=api_key, disable_version_check=disable_version_check, max_retries=max_retries, keep_alive=keep_alive) root_response = self._session.get(_API_ROOT, timeout=2) self._tasks_endpoint = root_response.body['_links']['tasks']['href'] self._api_key_endpoint = root_response.body['_links']['apiKeys']['href'] def _create_task(self, title: str, parameters: List[Parameter], constraints: List[Constraint] = None, prior_means: List[PriorMeanExpression] = None, random_seed: int = None, initial_configurations: int = None, objectives: List[Objective] = None, goal: Goal = None, min_known_score: float = None, max_known_score: float = None, user_defined_data: Any = None, targets: List[Parameter] = None, likelihood: Expr = None, optimizer_name: str = None)\ -> Task: """Formats the body of the request and returns a new :class: `.Task` by making a POST request to OPTaaS""" body: Dict = dict( title=title, parameters=[p.to_json() for p in parameters], constraints=[constraint.to_optaas_expression() for constraint in constraints] if constraints else [], priorMeans=[prior_mean.to_optaas_expression() for prior_mean in prior_means] if prior_means else [], objectives=[objective.to_json() for objective in objectives] if objectives else None, goal=goal.name if goal else None, randomSeed=random_seed, userDefined=user_defined_data, initialConfigurations=initial_configurations, minKnownScore=min_known_score, maxKnownScore=max_known_score, targets=[t.to_json() for t in targets] if targets else None, likelihood=str(likelihood) if likelihood else None, optimizerName=optimizer_name ) body = {key: value for key, value in body.items() if value is not None} response = self._session.post(self._tasks_endpoint, body=body) return Task(json=response.body, session=self._session)
[docs] def create_task(self, title: str, parameters: List[Parameter], constraints: List[Constraint] = None, prior_means: List[PriorMeanExpression] = None, random_seed: int = None, initial_configurations: int = None, objectives: List[Objective] = None, goal: Goal = None, min_known_score: float = None, max_known_score: float = None, user_defined_data: Any = None)\ -> Task: """Creates a new :class:`.Task` by making a POST request to OPTaaS Args: title (str): Name/description of your Task. parameters (List[Parameter]): Parameters that you would like to optimize. constraints (List[Constraint]): Constraints on what values can be assigned to Parameters. prior_means (List[PriorMeansExpression]): Prior means to be used by the optimizer. This is a list of expressions provided by the user which together define a guess for the function we are trying to optimize. Expressions are provided in the same "When-Then" format that is used to describe input parameter constraints. The ordering of this list is important: the first expression whose "When" evaluates to True will be used to calculate the prior mean value. If none evaluate to True, a default value of 0 will be used, which is equivalent to there being no prior mean known. Prior means do not come with uncertainty information, and they are directly subtracted from the data before a surrogate model is fitted. initial_configurations (int, optional, default 10, minimum 1): Number of Configurations that OPTaaS will generate upfront. If you are planning to have multiple clients working concurrently, set this to be equal to the number of clients. objectives (List[Objective], optional): Specification of each objective for a multi-objective optimization. Note: Conditional parameters (i.e. ChoiceParameters and anything with optional=True) are not supported in multi-objective tasks. goal (Goal, optional, default Goal.max): Whether OPTaaS should aim for the lowest (min) or highest (max) score. Do not use in multi-objective optimizations (specify goal for each objective instead). min_known_score (float, optional): Minimum known score value. Do not use in multi-objective optimizations (specify min_known_score for each objective instead). max_known_score (float, optional): Maximum known score value. Do not use in multi-objective optimizations (specify max_known_score for each objective instead). user_defined_data (Any, optional): Any other data you would like to store in the task JSON random_seed (int, optional): Seed for the random generator used by OPTaaS when generating :class:`Configurations <.Configuration>`. If not specified, a new seed will be used for each Task. Use this only if you need reproducible results, i.e. if you create 2 Tasks with identical attributes including an identical `random_seed`, and you use the same scoring function, then OPTaaS is guaranteed to generate the same Configurations in the same order for both Tasks. Returns: A new :class:`.Task` Raises: :class:`.OPTaaSError` if the Task data is invalid or the server is unavailable. """ return self._create_task( title=title, parameters=parameters, constraints=constraints, prior_means=prior_means, objectives=objectives, goal=goal, random_seed=random_seed, user_defined_data=user_defined_data, initial_configurations=initial_configurations, min_known_score=min_known_score, max_known_score=max_known_score, optimizer_name=MfOptOptimizer.BAYESIAN.value )
[docs] def create_likelihood_task(self, title: str, parameters: List[Parameter], targets: List[Parameter], observed_data: List[Objective], likelihood: Expr, constraints: List[Constraint] = None, random_seed: int = None, initial_configurations: int = None, user_defined_data: Any = None,)\ -> Task: """Creates a new :class:`.Task` by making a POST request to OPTaaS Args: title (str): Name/description of your Task. parameters (List[Parameter]): Parameters that you would like to optimize. constraints (List[Constraint]): Constraints on what values can be assigned to Parameters. targets (List[Parameter]): Parameters to be optimized by maximising the likelihood. Note 1: Currently only one single is supported. observed_data (List[Objective], optional): Specification of the observed data at the configurations. Note: Conditional parameters (i.e. ChoiceParameters and anything with optional=True) are not supported in multi-objective tasks. likelihood (Expr): The likelihood function expressed as sympy Expr to be optimized wrt to the targets' variables. The likelihood is in function of the parameters, observed_data and targets. initial_configurations (int, optional, default 10, minimum 1): Number of Configurations that OPTaaS will generate upfront. If you are planning to have multiple clients working concurrently, set this to be equal to the number of clients. user_defined_data (Any, optional): Any other data you would like to store in the task JSON random_seed (int, optional): Seed for the random generator used by OPTaaS when generating :class:`Configurations <.Configuration>`. If not specified, a new seed will be used for each Task. Use this only if you need reproducible results, i.e. if you create 2 Tasks with identical attributes including an identical `random_seed`, and you use the same scoring function, then OPTaaS is guaranteed to generate the same Configurations in the same order for both Tasks. Returns: A new :class:`.Task` Raises: :class:`.OPTaaSError` if the Task data is invalid or the server is unavailable. """ return self._create_task( title=title, parameters=parameters, constraints=constraints, targets=targets, objectives=observed_data, likelihood=likelihood, random_seed=random_seed, user_defined_data=user_defined_data, initial_configurations=initial_configurations, optimizer_name=MfOptOptimizer.LIKELIHOOD.value, )
[docs] def create_sklearn_task(self, title: str, pipeline: 'OptimizablePipeline', additional_parameters: List[Parameter] = None, additional_constraints: List[Constraint] = None, additional_prior_means: List[PriorMeanExpression] = None, random_seed: int = None, initial_configurations: int = None, objectives: List[Objective] = None, goal: Goal = None, min_known_score: float = None, max_known_score: float = None, user_defined_data: Any = None, **kwargs) -> 'SklearnTask': """Creates a new :class:`.SklearnTask` by making a POST request to OPTaaS All the arguments from :meth:`.OPTaaSClient.create_task` can be used here except instead of `parameters` and `constraints` there is `additional_parameters` and `additional_constraints`. Args: pipeline (OptimizablePipeline): The pipeline you wish to optimize. additional_parameters (List[Parameter], optional): Additional parameters that you would like to optimize. additional_constraints (List[Constraint], optional): Additional constraints on your Parameters. additional_prior_means (List[Constraint], optional): Additional prior_means on your Parameters. kwargs: Additional arguments required to optimize certain estimators, e.g. :class:`.PCA` requires `feature_count`. Returns: A new :class:`.SklearnTask` Raises: :class:`.MissingArgumentError` if a required argument is missing from `kwargs`. :class:`.OPTaaSError` if the Task data is invalid or the server is unavailable. """ from mindfoundry.optaas.client.sklearn_pipelines.sklearn_task import SklearnTask # pylint: disable=redefined-outer-name,import-outside-toplevel parameters, constraints, prior_means = pipeline.make_all_parameters_constraints_and_prior_means('pipeline', '', **kwargs) if additional_parameters: parameters.append(GroupParameter('additional', items=additional_parameters)) if additional_constraints: constraints.extend(additional_constraints) if additional_prior_means: prior_means.extend(additional_prior_means) task = self._create_task( title=title, parameters=parameters, constraints=constraints, prior_means=prior_means, objectives=objectives, goal=goal, random_seed=random_seed, user_defined_data=user_defined_data, initial_configurations=initial_configurations, min_known_score=min_known_score, max_known_score=max_known_score, ) return SklearnTask(task, pipeline.estimators)
[docs] def get_all_tasks(self) -> List[Task]: """Retrieves a list of all stored Tasks by making a GET request to OPTaaS. Returns: List of :class:`Tasks <.Task>` Raises: :class:`.OPTaaSError` if the server is unavailable """ response = self._session.get(self._tasks_endpoint) return [Task(json, self._session) for json in response.body['tasks']]
[docs] def get_task(self, task_id: str) -> Task: """Retrieves a stored :class:`.Task` by making a GET request to OPTaaS. Args: task_id (str): unique id for the Task Returns: A :class:`.Task` Raises: :class:`.OPTaaSError` if no record is found with the given id or the server is unavailable. """ response = self._session.get(f'{self._tasks_endpoint}/{task_id}') return Task(response.body, self._session)
[docs] def get_sklearn_task(self, task_id: str, pipeline: 'OptimizablePipeline') -> 'SklearnTask': """Retrieves a stored :class:`.SklearnTask` by making a GET request to OPTaaS. This allows you to create a SklearnTask and then use it again in a separate/later session, assuming of course that you call this method with the same `estimators` you used to create the original task. Args: task_id (str): unique id for the Task pipeline (OptimizablePipeline): The same pipeline used when calling :meth:`.OPTaaSClient.create_sklearn_task` Returns: A :class:`.SklearnTask` Raises: :class:`.OPTaaSError` if no record is found with the given id or the server is unavailable. """ from mindfoundry.optaas.client.sklearn_pipelines.sklearn_task import SklearnTask # pylint: disable=redefined-outer-name,import-outside-toplevel task = self.get_task(task_id) return SklearnTask(task, pipeline.estimators)
[docs] def get_api_keys(self) -> List[ApiKey]: """Retrieves the list of all API keys by making a GET request to OPTaaS. Only available to Admin users.""" response = self._session.get(self._api_key_endpoint) return [ApiKey(json, self._session) for json in response.body['apiKeys']]
[docs] def generate_api_key(self, role: UserRole = None) -> ApiKey: """Generates a new API key by making a POST request to OPTaaS. Only available to Admin users.""" response = self._session.post(self._api_key_endpoint, {} if role is None else {"role": role.value}) return ApiKey(response.body, self._session)